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Microstructural development in cast alloys
based on the b-NiAl–b@-Ni2AlTi–c@-Ni3Al–a-Cr
system

W. F. GALE, Z. A. M. ABDO
Materials Research and Education Center, Auburn University, Auburn AL 36849, USA
E-mail: wfgale@eng.auburn.edu

An investigation of microstructural development in three arc-cast Ni–Al–Cr–Ti multiphase
alloys derived from the B2 type b-NiAl phase is presented. Detailed microstructural
characterization of Ni–25 at % Al–20 at % Cr–15 at % Ti, Ni–26 at % Al–21 at % Cr–11 at % Ti
and Ni–25 at % Al–24 at % Cr–15 at % Ti materials by transmission electron microscopy
(TEM), is described. Microstructural development is examined in both the as-cast condition
and after 140 h homogenization treatments at both 850 and 1100 °C. The formation of
a eutectic between an L21-type b@ phase (Heusler phase, with a nominal composition of
Ni2AlTi) and elemental a-Cr is examined. The precipitation of a within b(@) and vice versa,
in both the inter- and intradendritic regions, is considered. The formation of L12-type c@
(nominally Ni3Al) precipitates within the b and b@-phases is discussed, as is the
transformation of b to two-phase b/b@ during ageing.  1998 Chapman & Hall
1. Introduction
The production of multiphase microstructures based
on the B2-type intermetallic compound NiAl
(commonly denoted as the ‘‘b’’ phase) has attracted
considerable recent interest (e.g. [1—5]). These multi-
phase microstructures are intended to enhance
either: (a) room-temperature ductility/toughness, or
(b) high-temperature creep resistance over that ob-
tainable with single-phase b. Materials based on
NiAl—a [4] eutectic systems, where ‘‘a’’ represents
a body-centred cubic metal such as chromium or
molybdenum, represent an important class of multi-
phase microstructures intended to enhance room-tem-
perature toughness. Ductility/toughness enhancement
by the addition of both ordered L1

2
-type c@ (nominally

Ni
3
Al) and disordered face-centred cubic (e.g. nickel-

base) solid-solutions has also attracted considerable
attention (e.g. [6—9]). Multiphase microstructures int-
ended to enhance the creep resistance of NiAl, include
alloys [10, 11] strengthened by the precipitation of
b@ phases (L2

1
-type Heusler phases, such as Ni

2
AlTi).

In this paper, an investigation is presented of micro-
structural development in Ni—Al—Cr—Ti alloys con-
taining a and c @ phases (that offer potential for
enhanced ductility/toughness) and b@ (with the inten-
tion of providing improved creep resistance). Arc-cast
materials are investigated in both the as-cast con-
dition and after 140 h homogenization treatments at
both 850 and 1100 °C.

2. Experimental procedure
Arc-cast samples of Ni—25 at % Al—20 at%
Cr—15 at % Ti, Ni—26 at % Al—21 at % Cr—11 at% Ti
0022—2461 ( 1998 Chapman & Hall
and Ni—25 at% Al—24 at% Cr—15 at% Ti were pro-
duced in the form of 30 g buttons. These buttons were
each inverted and arc-melted six times to promote
mixing. Homogenization treatments were conducted
in an argon atmosphere at temperatures of 850 and
1100 °C for 140h, followed by furnace cooling to room
temperature. Selection of the materials examined in
the present paper was based on earlier studies by the
authors (e.g. [12, 13]) of microstructural development
in Ni—Al—Cr alloys with b—c@—a derived microstruc-
tures. For the present work, titanium was included
with the intention of promoting the formation of the
b@ phase.

Transmission electron microscopy (TEM) speci-
mens were prepared from each of the arc-cast
alloys in the as-cast condition and after both 850
and 1100 °C homogenization. Ion milling, rather
than electropolishing, was employed to manufacture
the TEM specimens, as severe problems with dif-
ferential polishing have been experienced previously
by the authors with alloys of this type. Argon-ion
milling was conducted using a Gatan DuoMill
employing an accelerating voltage of 5 kV with
dual guns operated at a current of 500 lA per
gun with gun—specimen angles of 13°. The TEM
investigations were supplemented by light and
scanning electron microscopy (LM and SEM, respec-
tively). SEM and LM studies were conducted on
metallographic samples electroetched at 3V in a
solution consisting of 70 vol % distilled water,
10 vol% glycerol, 15 vol % hydrochloric acid and
5 vol% nitric acid. For analytical investigations, SEM
work on polished, but unetched samples was also
conducted.
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TEM investigations utilized a JEOL JEM 2010
instrument operated at 200kV. Throughout this pa-
per, the following nomenclature is employed: BF and
DF indicate bright-field and dark-field micrographs,
respectively, B represents the beam direction for
selected-area diffraction (SAD) patterns and g indi-
cates the reciprocal lattice vector of the operating
reflection in DF images. SEM studies employed a
JEOL JSM 840 instrument operated at 20 kV. Ana-
lytical studies were conducted using energy-dispersive
X-ray spectroscopy (EDS) via ultra-thin window
(UTW) detectors and Link Systems Isis analysers at-
tached to the JEM 2010 and JSM 840 instruments.
Quantitative SEM-based and qualitative TEM-based
analyses were performed.

3. Results and discussion
In this section the microstructural features of the
Ni—25 at% Al—20 at % Cr—15 at % Ti, Ni—26 at%
Al—21 at% Cr—11 at % Ti and Ni—25 at% Al—24 at%
Cr—15 at % Ti alloys investigated in this work will be
discussed. The microstructures of these materials are
summarized in Table I and compositional data are
given in Table II.

3.1. Overall as-cast microstructure
The Ni—25 at% Al—20 at% Cr—15 at% Ti and
Ni—26 at% Al—21 at % Cr—11 at % Ti alloys both
solidified dendritically (Fig. 1), forming dendrite ma-
trices comprised, respectively, of L2

1
-type b@ and B2

type b. However, occasional intradendritic b@ pre-
cipitates were observed in the as-cast Ni—26 at%
Al—21 at% Cr—11 at % Ti alloy. In both the
Ni—25 at% Al—20 at% Cr—15 at% Ti material and
the Ni—26 at% Al—21 at % Cr—11 at% Ti alloy, so-
lidification terminated with the formation of a eutec-
tic. However, the character of the eutectic differed
between the Ni—25 at% Al—20 at% Cr—15 at % Ti
alloy and Ni—26 at% Al—21 at % Cr—11 at% Ti ma-
terial, in that a b@—a mixture was produced in the
former case (Fig. 2) and a b—a combination in the
latter. Furthermore, a b@—a eutectic mixture was ob-
served to comprise the entire as-cast microstructure of
the Ni—25 at% Al—24 at% Cr—15 at% Ti alloy.

In all of the materials examined in the present
work, the A2 type (i.e. body-centred cubic) a-phase
was based on chromium with some nickel in solid
solution. The a-phase contained only small amounts
of aluminium and titanium. The b—a and b@—a eutectic
mixtures were generally lamellar, although regions
containing roughly rod-shaped a were also observed.
A cube—cube orientation relationship was ob-
served between the b(@) and a constituents of these
eutectic mixtures. However, in some localized regions,
a significant misorientation (up to around 5° in some
cases) was noted between the b(@) and a phases.

The b@ and b-phases have nominal compositions of
Ni

2
AlTi and NiAl, respectively. These compositions

were not achieved exactly in the present work: both
b and b@ were nickel-enriched and contained a small
amount of chromium and the b-phase incorporated
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Figure 1 LM image showing the overall microstructure of the
Ni—25 at% Al—20 at% Cr—15 at% Ti material (sample aged for
140 h at 850 °C; a, b@ dendrite; b, b@—a eutectic).

Figure 2 Microstructure of the b@—a eutectic mixture. (a) BF micro-
graph showing the as-cast Ni—25 at% Al—20 at% Cr—15 at% Ti
alloy (c, b@, d, a). (b) SAD pattern with B"[1 1 0]a,b{

showing the
cube—cube orientation relationship of the eutectic b@ and a phases
(Ni—25 at% Al—24 at% Cr—15 at% Ti alloy aged for 140 h at
850 °C).

some titanium in solid solution. Nonetheless, the
formation of b@ dendrites in the titanium-rich
Ni—25 at% Al—20 at% Cr—15 at % Ti alloy and b-
phase dendrites in the lower-titanium Ni—26 at%
Al—21 at% Cr—11 at% Ti material is unsurprising.
The presence of a eutectic containing a-Cr in these
materials correlates with rejection of chromium back
into the liquid by the growing b(@) phase (as can be seen
from the post-solidification EDS data contained in
Table II). Furthermore, the formation of a microstruc-
ture comprised entirely of a lamellar b@—a eutectic in
the Ni—25 at% Al—24 at % Cr—15 at % Ti alloy is not
unreasonable, given that this alloy is both titanium-
and chromium-rich.

3.2. The influence of ageing on the
dendritic and interdendritic matrices

With some notable exceptions, ageing at both 850 and
1100 °C had relatively little effect on the microstruc-
ture of either the dendritic or interdendritic matrices
of the materials examined. The exceptions to this
tendency all occurred in the interdendritic region of
the Ni—26 at% Al—21 at% Cr—11 at % Ti material.
When aged at 850 °C, the b-phase portion of the b—a
eutectic in this alloy decomposed to form a two-phase
mixture of b and b@. Thus, the resulting transformed
eutectic consisted of b/b@—a (Fig. 3). As has been ob-
served previously in b/b@ alloys (e.g. [10] ), the b and b@
were cube—cube orientation related and the interface
between these two phases was semicoherent. The b/b@
was, in general, roughly lamellar. However, the lamel-
lar width within the b/b@ region (typically around
100—200nm) was far smaller than that of the eutectic
itself (the a and b@ lamellae constituting the as-cast
eutectic typically possessed widths of around a few
micrometres, although a wide range of lamellar spac-
ings was observed).

Ageing the Ni—26 at % Al—21 at% Cr—11 at% Ti
material at 1100 °C resulted in significant growth of
the b-phase dendrites at the expense of the inter-
dendritic region. This process left a rump interde-
ndritic region comprised entirely of single-phase a-Cr.
Ageing of this same alloy at 850 °C led to the forma-
tion of b-phase precipitates within the eutectic a-phase
(Fig. 3). These b-phase precipitates were spheroidal,
typically with a diameter of around 10—50nm.
A cube—cube orientation relationship was observed
between the b and a phases.

3.3. Precipitation of intradendritic and
interdendritic a as a second-phase

In the as-cast condition, a was present as an intraden-
dritic second phase in the two dendrite-forming alloys
examined. These a precipitates were cube—cube ori-
entation related to the dendrite matrix (i.e. b or b@).
The a-phase formed as spherical precipitates, with
a diameter typically in the range of 10—50nm. The
finer precipitates (Fig. 4) in this range formed coherent,
elastically strained interfaces with the matrix. In con-
trast, the coarser precipitates were semicoherent, as
has been observed previously for b-phase materials
containing a-precipitates (e.g. [14]). Ageing at both
850 and 1100 °C maintained the existing intraden-
dritic a precipitates and initiated some additional
intradendritic a deposits.
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Figure 3 Modification of the interdendritic regions of the Ni—
26 at% Al—21 at% Cr—11 at% Ti material as a result of ageing at
850 °C for 140 h. (a) BF micrograph showing the precipitation of
b within the eutectic a-phase (e) and the formation of two-phase b/b@
(f) from the eutectic b-phase. The precipitation of c@ (g) on the b/b@—a
boundary and a (h) within the b/b@ region are also apparent. (b) DF
micrograph of the region shown in (a). This image was recorded
using the g"(1 1 1)c{

, (1 1 0)a common reflection. The c@ precipitate
is almost exactly cube—cube with the eutectic a, whereas misorienta-
tion between the a and b/b@ results in the latter being out of contrast.

Figure 4 Intradendritic precipitation of a-Cr in the as-cast condi-
ton. BF micrograph showing a-Cr precipitates with an elastically
strained coherent interface to the b@-phase dendrite matrix of the
Ni—25 at% Al—20 at% Cr—15 at% Ti alloy.



Figure 5 BF image showing the formation of a-Cr within the eutec-
tic b@ phase (i) of the Ni—25 at% Al—20 at% Cr—15 at% Ti alloy
aged for 140 h at 850 °C. Note the presence of a precipitate-free
zones (j) adjacent to the eutectic a-phase (k).

Ageing at 850 °C complicated the microstructure of
the b(@)—a eutectic mixtures of the materials examined.
In all cases, a was observed to precipitate (with either
a spheroidal or rod-shaped morphology) within the
b or b@ portion of the eutectic. A cube—cube orienta-
tion relationship was observed between the b(@) and the
a phases. In general, a precipitates were formed
throughout the b@ portion of the eutectic. However, in
the Ni—25 at% Al—20 at % Cr—15 at % Ti alloy, chro-
mium-depleted regions were observed adjacent to the
existing eutectic a-Cr due to growth of these deposits
during ageing. These chromium-depleted regions cor-
related with the formation of precipitate-free zones
around the a lamellae (Fig. 5).

3.4. Precipitation of c@ second phases
The Ni—26 at % Al—21 at% Cr—11 at% Ti material
was observed to possess a fringe of interdendritic c@
needles surrounding the dendrites in the as-cast
condition. In contrast, in the as-cast condition, the
other two materials examined were free of c@. The
Ni—26 at% Al—21 at% Cr—11 at % Ti material con-
tained numerous interdendritic c@ precipitates (within
the b/b@ regions) after ageing at 850 °C. The two den-
dritic alloys (Ni—25 at % Al—20 at% Cr—15 at % Ti
and Ni—26 at % Al—21 at% Cr—11 at % Ti) also
showed extensive intradendritic precipitation of c@
after ageing (Fig. 6). Both needle-like and ellipsoidal c@
morphologies were observed within the b or b@ phase.
A range of c@ precipitate sizes was observed with
precipitate lengths typically in the range of 500 nm to
1 lm and widths of 50—250 nm. The c@ precipitates
were generally twinned and contained either extensive
microtwinning or a single central twinned midrib
(twinning in such c@ precipitates has been discussed
elsewhere, e.g. [10, 15, 16]).

In the case of both the intra- and interdendritic
precipitation of c@, orientation relationships of either
the Kurdjumov—Sachs

[1 11 1]b E [0 11 1]c{

(1 1 0)b E (1 1 1)c{
Figure 6 The intradendritic precipitation of twinned c@ in the
Ni—25 at% Al—20 at% Cr—15 at% Ti alloy, aged for 140 h at
850 °C. (a) BF micrograph showing the c@ precipitates (l) in a b@
matrix (m). The figure also shows a-Cr precipitates (n). (b) SAD
pattern with B"[1 1 0]c{

showing the twinning of a c@ precipitate.

or Nishiyama—Wasserman (Fig. 7)

[0 0 1]b E [11 0 1]c{

(1 1 0)b E (1 1 1)c{

type were produced between the c@ and the sur-
rounding matrix. However, an additional complica-
tion was observed in the case of the interdendritic
regions. In these regions, a portion of the c@ (Fig. 3)
was nucleated on the b(@)—a boundaries and then grew
into the b(@). In locations where the b(@) and a phases
were significantly misoriented, an exact orientation
relationship was invariably established with the a
rather than the b(@).

In summary, amongst the materials investigated,
the formation of interdendritic regions containing a
b(@)—a eutectic is encouraging from the standpoint
of potential for toughening. However, further work
will be required to modify the composition and pro-
cessing of these materials in order to encourage the
formation of creep-resisting two-phase b/b@ (rather
than either single-phase b or b@ which were generally
observed in the present work) both intra- and inter-
dendritically.
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Figure 7 SAD patterns illustrating the formation of a Nishiyama—
Wasserman type orientation relationship between the c@ and b-
phases in the intradendritic region of the Ni—26 at% Al—21 at%
Cr—11 at% Ti material held for 140 h at 850 °C. (a) B"[11 0 1]c{

,
(b) B"[0 0 1]b E [11 0 1]c{

.

4. Conclusions
A microstructural study of three cast multiphase
NiAl-derived alloys, Ni—25 at % Al—20 at%
Cr—15 at % Ti, Ni—26 at % Al—21 at % Cr—11 at% Ti
and Ni—25 at % Al—24 at% Cr—15 at% Ti has been
undertaken. Although the three alloys lay within only
a limited range of composition, significant differences
were observed between the microstructures of these
materials. As a result of this investigation, the follow-
ing specific conclusions have been drawn.

1. The relatively high titanium content of the
Ni—25 at% Al—20 at% Cr—15 at% Ti alloy, when
compared with the Ni—26 at% Al—21 at%
Cr—11 at % Ti material, correlated with dendritic sol-
idification of these materials to b@ and b, respectively.
2304
2. All of the materials investigated formed a two-
phase eutectic, involving the a phase and either b or b@.
Indeed the chromium-rich Ni—25 at% Al—24 at%
Cr—15 at % Ti alloy consisted entirely of a b@—a eutec-
tic. In the two dendritic alloys, chromium segregated
strongly to the interdendritic regions and this corre-
lated with the formation of the chromium-rich
a-phase. A significant amount of intradendritic a
precipitation was also noted.

3. In general, ageing at 850 and 1100 °C did not
change the basic microstructure of the materials
examined. However, in some cases, ageing did induce
extensive precipitation of c@ within the intra- and in-
terdendritic b(@). Ageing also led to the precipitation of
a within the eutectic b(@) and b within the eutectic a.
Decomposition of the eutectic b-phase to two-phase
b/b@ was observed in the Ni—26 at% Al—21 at%
Cr—11 at % Ti material aged at 850 °C.
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